
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02253-6
Eur. Phys. J. C 42, 127–137 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Classical solutions in a Lorentz violating scenario
of Maxwell–Chern–Simons–Proca electrodynamics

H. Belich Jr.1,a, T. Costa-Soares2,4,b, M.M. Ferreira Jr.3,c, J.A. Helayël-Neto4,d
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Abstract. Taking as starting point the planar model that arises from the dimensional reduction of the
Abelian-Higgs Carroll–Field–Jackiw model, we write down and study the extended Maxwell equations and
the associated wave equations for the potentials. The solutions for these equations correspond to the usual
ones for the MCS-Proca system, supplemented with background-dependent correction terms. In the case
of a purely timelike background, exact algebraic solutions are presented which possess a similar behavior
to the MCS-Proca counterparts near and far from the origin. On the other hand, for a purely spacelike
background, only approximate solutions are feasible. They consist of non-trivial analytic expressions with
manifest evidence of spatial anisotropy, which is consistent with the existence of a privileged direction in
space. These solutions also behave similarly to the MCS-Proca ones near and far from the origin.

PACS. 11.10.Kk, 11.30.Cp, 11.30.Er

1 Introduction

Lorentz and CPT violating theories in (1 + 3) dimensions
have been object of intensive investigation in the latest
years [1–12]. An odd-CPT Lorentz violating model (with
a Chern–Simons-like term) was considered in a pioneer-
ing work in the context of classical electrodynamics by
Carroll–Field–Jackiw [1], by setting up a simple way to
realize the CPT and Lorentz breaking in the framework
of the Maxwell theory. In a general perspective, an ex-
tension of the minimal SU(3) × SU(2) × U(1) standard
model incorporating odd- and even-CTP terms was de-
veloped by Colladay and Kostelecky [2] as a low-energy
limit of a Lorentz covariant model valid at the Planck
scale. This master model undergoes a spontaneous sym-
metry breaking, generating an effective action that in-
corporates Lorentz violation and keeps unaffected the
SU(3) × SU(2) × U(1) gauge structure and the energy-
momentum conservation. This standard model extension
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(SME) has then been investigated under diverse aspects
[4,6].

The Carroll–Field–Jackiw model[1], in spite of predict-
ing several interesting new properties and a potentially
rich phenomenology, is a model plagued with some seri-
ous problems, like the absence of stability and causality
in the case of a purely timelike background, vµ = (v0, 0).
Even so, this theory has been fairly well discussed under
a number of different aspects, like the following ones:
(i) the birefringence (optical activity of the vacuum), in-
duced by the fixed background [1,7],
(ii) the investigation of radiative corrections [8],
(iii) the consideration of spontaneous breaking of U(1)-
symmetry in this framework [9],
(iv) the search for a supersymmetric Lorentz violating ex-
tension model [10],
(v) the study of vacuum Cerenkov radiation [11], the pho-
ton decay process [12], and some other points.

The great interest aroused by such an issue has mo-
tivated the study of Lorentz violating theories in lower
dimensions. In this sense, a dimensional reduction (to
D = 1 + 2) of the Lorentz breaking Maxwell electro-
dynamics, endowed with the Carroll–Field–Jackiw term
(εµνκλvµAνFκλ) [1], has been recently performed [13],
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yielding a gauge invariant planar quantum electrodynam-
ics (QED3) composed of a Maxwell–Chern–Simons gauge
sector, a Klein–Gordon massless scalar field (ϕ), and
the fixed 3-vector (vµ), responsible for the Lorentz vi-
olation. As for the physical consistency of this model,
some of its general features have been investigated. One
has then verified that the complete model is stable and
preserves causality and unitarity without any restrictions
[13]. Therefore, the full model supports a consistent quan-
tization for both time- and spacelike backgrounds. Fur-
thermore, the classical equations of motion and solutions
of this Lorentz violating planar model were considered as
well [14], revealing interesting deviations in relation to the
pure MCS case, like the absence of screening in the elec-
tric sector for a purely timelike background and manifest
anisotropy for a purely spacelike background.

The Carroll–Field–Jackiw model has been also con-
sidered in the context of a U(1) spontaneous symme-
try breaking, yielding an Abelian–Higgs Lorentz violating
model in (1+3) dimensions endowed with stable vortex
configurations [9]. In a further work [15], one has car-
ried out the dimensional reduction of this master model
to (1+2) dimensions, obtaining a planar Lorentz violating
Lagrangian with the Higgs sector. The consistency of this
model was properly analyzed at the classical level, reveal-
ing preservation of causality, stability and unitarity for
both time- and spacelike backgrounds, in a similar way to
the case addressed in [13]. Recently, one has also investi-
gated the presence of vortex configurations in this planar
framework [16], and it has been found out that there may
appear stable configurations of electrically charged vor-
tices which induce an Aharonov–Casher phase for neutral
particles.

To study Lorentz violating theories, we have adopted
a general procedure that consists in investigating and set-
ting up its classical aspects before addressing the second-
quantized case. With this program in mind, we have dis-
cussed the consistency (causality, unitarity and stability)
of the Higgs–Carroll–Field–Jackiw model both in (1 + 3)
and (1 + 2) dimensions, based on the dispersion relations
that are read off as poles of the propagators. This task
may indeed indicate the eventual presence of non-physical
modes, such as spacelike poles (tachyons) and negative-
norm 1-particle states (ghosts). Once one has thereby fixed
the parameters of the model and selected the situations
for which the spectrum does not display unphysical exci-
tations, it is sensible to carry out the second quantization
of the system.

In the present paper, one follows this general proce-
dure, now focusing the attention on the classical electro-
dynamics that stems from the U(1) broken phase of the
planar version of the Abelian–Higgs CFJ model. The main
goal is to describe the influence of the Lorentz violating
background on the solutions associated with a system of
point-like charges, bearing in mind the results obtained in
[14], which revealed the possibility of having new physics
induced by the presence of the background (as the vanish-
ing of the screening associated with the MCS electrody-
namics, for instance). In this sense, one first writes down

the tree-level Lagrangian of the U(1) broken phase of the
Higgs–Abelian model worked out in [15]; it is composed
of a MCS-Proca gauge sector coupled to a Klein–Gordon
massive field by means of the Lorentz violating term.
The associated classical equations of motion (the extended
Maxwell equations) and wave equations (for the potential
Aµ) are written in the sequel. Such equations correspond
to the ones of the usual MCS-Proca electrodynamics sup-
plemented by terms that depend on the background vec-
tor. So, it might be expected that the solutions we find cor-
respond to the MCS-Proca ones corrected by background-
dependent terms. Indeed, this is the case. Proceeding fur-
ther, solutions for field strengths and potentials have been
found for point-like charges (both for purely timelike and
spacelike backgrounds), exhibiting vµ-dependent correc-
tions with respect to the pure MCS-Proca counterparts.

Specifically, in the case of a purely timelike back-
ground, exact algebraic solutions are attained by means
of Fourier integrations. Both the scalar and vector poten-
tials are given in terms of linear combinations of modified
Bessel functions (K0, K1) and behave at the origin and far
from it in much the same way as the pure MCS-Proca so-
lutions; the difference always occurs at some intermediary
radial region. Since these Bessel functions decay exponen-
tially, it is evident that the associated solutions present
a strong screening, typical for the case where the physi-
cal intermediation is played only by massive particles. It
has also been noticed that the scalar potential (A0) ex-
hibits a familiar form, similar to the MCS-Proca solution.
However, it may significantly differ from the latter poten-
tial in the case of a small Proca mass (MA/s � 1) or a
large background (v0 � s), in which case it becomes at-
tractive in some radial range. As for the vector potential
(A), one is able to write down a solution rather similar
to the MCS-Proca counterpart, without qualitative alter-
ations. However, these solutions may differ substantially
at intermediary distances for the case in which (v0 � s).
Plots are introduced to illustrate the points alluded to
here.

On the other hand, in the case of a purely spacelike
background, the Fourier integrations as a result are no
more exactly soluble, implying the necessity of employ-
ing approximations which lead to algebraic solutions of
great complexity (in leading order in v2/s2). The presence
of spatial anisotropy becomes a manifest property, in the
form of correction terms with a clear dependence on the
angle determined by the fixed background (v). The scalar
potential worked out consists of a complex combination
of Bessel and radial functions (K0, rK1, K1/r); its forms
near and far from the origin are qualitatively similar to the
MCS-Proca case: it vanishes for r → ∞ and goes as ln r
for r → 0. Concerning the vector potential, it also appears
as a lengthy combination of Bessel and radial functions
(rK0, K0/r, K1, K1/r2), exhibiting anisotropy terms. In
spite of the involved complexity, this potential presents an
identical behavior to the MCS-Proca counterpart near and
away from the origin. A graphical analysis reveals that the
presence of the background does not amount to qualitative
or sensitive modifications on the MCS-Proca solutions, be-
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cause of the small magnitude of the background compared
with the Chern–Simons parameters (v2/s2 � 1).

The method of investigation adopted here has yielded
solutions for the Klein–Gordon field as well, revealing an
analogous structure to the scalar potential both in the
purely timelike and spacelike backgrounds. Moreover, it
is important to point out that such solutions recover the
pure MCS-Proca results in limit of a vanishing background
(vµ = 0) , which is a necessary condition to attest the va-
lidity of the solutions found out.

In short, this paper is outlined as follows. In Sect. 2,
we present the basic features of the reduced model, previ-
ously developed in [15]. In Sect. 3, the equations of motion,
from which one derives the wave equations for potentials
and field strengths, are presented. In Sect. 4, we solve the
equations for the scalar potential (in the static limit) for
the time- and spacelike cases and discuss the results. In
Sect. 5, we solve the differential equations for the vector
potential according to the procedure adopted in Sect. 4.
In Sect. 6, we present our conclusions and make some fi-
nal remarks.

2 The dimensionally reduced Lorentz
violating model

We take as starting point the Carroll–Field–Jackiw
Lorentz violating electrodynamics minimally coupled to
a scalar field sector, endowed with spontaneous symmetry
breaking [9]1:

L1+3 = −1
4
Fµ̂ν̂F µ̂ν̂ +

1
4
εµ̂ν̂κ̂λ̂vµ̂Aν̂Fκ̂λ̂ + (Dµ̂φ)∗Dµ̂φ

− V (φ∗φ) − Aν̂J ν̂ , (1)

where vµ̂ stands for the fixed background (associated with
the Lorentz violation at the level of the particle frame)
[3] and the Greek letters with hat, µ̂, run from 0 to 3.
Here, Dµ̂ = (∂µ̂ + ieAµ̂) is the covariant derivative which
sets up the minimal coupling with the scalar field while
V (φ∗φ) = m2φ∗φ+λ(φ∗φ)2 represents the scalar potential
responsible for spontaneous symmetry breaking. The the-
oretical model of the Lagrangian (1) was analyzed in [9],
in which it has been shown that it is consistent (endowed
with causality and unitarity) only for a purely timelike
background.

We should now consider the dimensionally reduced ver-
sion of this model, which has been developed and analyzed
in [15], where one can find the motivations to consider it
and details of the reduction process are given. Applying
the prescription of the dimensional reduction, described in
[13,15], on (1), one obtains the reduced planar Lagrangian:

1 Here one has adopted the following metric conventions:
gµν = (+, −, −, −) in D = 1 + 3, and gµν = (+, −, −) in
D = 1 + 2.

L1+2 = −1
4
FµνFµν +

1
2
∂µϕ∂µϕ +

s

2
εµνkAµ∂νAk

− ϕεµνkvµ∂νAk + (Dµφ)∗(Dµφ) − e2ϕ2(φ∗φ)
− V (φ∗φ) − AµJµ − ϕJ, (2)

where the Greek letters (now without hat) run from 0
to 2. The scalar field, ϕ, is the remanent of the com-
pactified coordinate of the vector potential (A(3) = ϕ),
here acting as a massless Klein–Gordon field. The mix-
ing Chern–Simons-like term, ϕεµνkvµ∂νAk, in spite of
being covariant in form, is not Lorentz invariant in the
particle frame, in which the fixed (vµ) background does
not boost as a 3-vector. The Lagrangian (2) represents a
field model endowed with Lorentz violation and sponta-
neous symmetry breaking, which may constitute a theo-
retical framework useful to analyze planar vortex configu-
rations. Its components present the following mass dimen-
sion: [Aµ] = [ϕ] = 1/2, [s] = [vµ] = 1, [Jµ] = 5/2.

Having established the planar Lorentz violating
model, we can now consider the spontaneous symmetry
breaking process, which provides mass to the gauge and
scalar fields [15]. Once we are bound to a tree-level anal-
ysis, we then retain only the bilinear terms, so that the
planar Lagrangian takes the form

Lbroken
1+2

= −1
4
FµνFµν +

1
2
∂µϕ∂µϕ − 1

2
M2

Aϕ2 +
s

2
εµνkAµ∂νAk

− ϕεµνkvµ∂νAk +
1
2
M2

AAµAµ − AµJµ − ϕJ, (3)

where M2
A = 2e2〈φφ〉, with 〈φφ〉 being the vacuum ex-

pectation value of the scalar field. The tree-level La-
grangian above represents a theoretical model composed
of a Maxwell–Chern–Simons–Proca gauge sector, the mas-
sive Klein–Gordon field and the Lorentz violating mixing
term. This is the Maxwell–Chern–Simons–Proca electro-
dynamics corrected by the presence of the fixed back-
ground. The Higgs field is not considered in the La-
grangian above once we work in the U(1) broken phase
and the unitary gauge has been chosen; as a consequence,
this field has its own kinetic term and does not mix, as far
as only bilinear terms are considered, with the gauge-field
part of the action.

In [15], the field propagators related to the Lagrangian
(3) were properly evaluated and taken as starting point to
analyze the consistency of this planar model, which has
been revealed to be totally causal and unitary for both
timelike and spacelike backgrounds. Indeed, no problem
concerning causality and unitarity was met with.

3 Wave equations for potentials
and field strengths

We now go on writing the extended wave equations which
govern the behavior for the potentials components and
field strengths of the scalar electrodynamics stated in



130 H. Belich Jr. et al.: Classical solutions in a Lorentz violating scenario

the Lagrangian (3), from which there follow two Euler–
Lagrangian equations of motion:

∂νFµν = sεµνρ∂νAρ + εµνρvν∂ρϕ + M2
AAµ − Jµ, (4)

(� + M2
A)ϕ = −εµνkvµ∂νAk − J, (5)

which lead to the extended Maxwell equations:

∇ × E + ∂tB = 0, (6)
∂tE − ∇∗B = −j − sE∗ − (v∗∂tϕ + v0∇∗ϕ)

+ M2
AA, (7)

∇ · E − sB = ρ − M2
AA0 + v × ∇ϕ, (8)

(� + M2
A)ϕ = v0∇ × A − v × E − J. (9)

The first of these equations is the non-covariant form of
the Bianchi identity (∂µFµ∗ = 0)2. The equation of mo-
tion (4) yields the two inhomogeneous ones, while (5)
leads to the latter one. From such equations, one read-
ily determines the mass dimension of the field strengths,
namely [E] = [B] = 3/2. The original four-dimensional
Lorentz breaking model is gauge invariant [1], a prop-
erty transferred also to the planar model. It may be di-
rectly demonstrated from (4); one easily obtains ∂µJµ =
−εµνρ∂µvν∂ρϕ. Whenever vµ is constant or has a null ro-
tational (εµνρ∂µvν = 0), this equation leads to the con-
ventional current-conservation law, ∂µJµ = 0, consistent
with gauge invariance.

From a pure algebraic manipulation of the Maxwell
equations, one finds that the fields B, E, satisfy second-
order inhomogeneous wave equations:

(� + s2 + M2
A)B

= −sρ + ∇ × j + sM2
AA0 − sv × ∇ϕ

− ∂t (∇ϕ) × v∗ − v0∇2ϕ, (10)
(� + s2 + M2

A)E
= −∇ρ − ∂tj + sj∗ − ∇(v × ∇ϕ) − sv (∂tϕ)
− sv0∇ϕ − sM2

AA∗ − v∗∂2
t ϕ + v0∇∗ (∂tϕ) . (11)

Similarly to the classical MCS model, the potential com-
ponents (A0,A) obey fourth-order wave inhomogeneous
equations:[

�(� + s2 + 2M2
A) + M2

A

]
A0

=
(
� + M2

A

)
[ρ + (v × ∇ϕ)] + s (∂t∇ϕ) × v∗

+ s∇ × j − sv0∇2ϕ, (12)[
�(� + s2 + 2M2

A) + M2
A

]
A

=
(
� + M2

A

)
(j + v∂tϕ + v0∇∗ϕ) − s∇∗ρ

− s∂tj
∗ + sv

(
∂2

t ϕ
)

− sv0∇ (∂tϕ) − s (∇(v × ∇ϕ))∗
, (13)

2 In D = 1 + 2 the dual tensor, defined as F µ∗ = 1
2 εµναFνα,

is a 3-vector given by F µ∗ = (B, −E∗). Here one adopts the
following convention: ε012 = ε012 = ε12 = ε12 = 1. The symbol
(∗) designates the dual of a vector; it transforms an arbitrary
2-vector A = (Ax, Ay) in the form A∗ = (Ay, −Ax).

It should be pointed out that the complexity of the inho-
mogeneous sector is directly related to the presence of the
background 3-vector in the Lagrangian (3). In the absence
of the background (vµ −→ 0), it is useful to verify that the
wave equations (10), (11), (12) and (13) reduce to their
classical usual MCS-Proca form:[

�(� + s2 + 2M2
A) + M4

A

]
A0

=
(
� + M2

A

)
ρ + s∇ × j, (14)[

�(� + s2 + 2M2
A) + M4

A

]
A

=
(
� + M2

A

)
j − s∇∗ρ − s∂tj

∗, (15)

[� + s2 + M2
A]E

= −∇ρ − ∂tj + sj∗ − sM2
AA∗, (16)

[� + s2 + M2
A]B

= −sρ + ∇ × j + sM2
AA0. (17)

For a static point-like charge distribution, the wave equa-
tions above have the following solutions:

A0(r) = (e/2π) [c+K0(m+r) + c−K0(m−r)], (18)

A(r) = − (e/2π) c[m+K1(m+r) − m−K1(m−r)]
∧
r∗,

(19)
E = − (e/2π)

× [c+m+K1(m+r) + c−m−K1(m−r)]
∧
r; (20)

B(r) = − (e/2π) c[m2
+K0(m+r) − m2

−K0(m−r)], (21)

with

c± =
1
2

[
1 ± s√

s2 + 4M2
A

]
, c =

1√
s2 + 4M2

A

, (22)

m2
± =

1
2

[
(s2 + 2M2

A) ± s
√

s2 + 4M2
A

]
. (23)

Near the origin these solutions behave as A0(r) →
− (e/2π) ln r, A(r) → 0,E → (e/2π)

∧
r/r, B(r) →

(e/2π) s ln r. Far from the origin, all these solutions vanish
according to the asymptotic exponentially-decaying be-
havior of the Bessel functions. The solutions above will be
used as a reference to help the identification of the con-
tributions stemming from the presence of the background
to the MCS-Proca electrodynamics stated in (3).

4 Solutions for the scalar potential
and electric field in the static limit

In this section, we focus on the solutions for the scalar po-
tential and electric field for a static point-like charge for
the case of both timelike and spacelike Lorentz violating
backgrounds. These solutions are worked out from the dif-
ferential equations (9) and (12), which (in the static limit)
become a coupled system of two differential equations.
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4.1 The external vector is purely timelike:
vµ = (v0, 0)

In the case of a static configuration, (9) and (12) are re-
duced to the form

[∇2(∇2 − s2 − 2M2
A) + M4

A]A0 + sv0∇2ϕ

= −(∇2 − M2
A)ρ, (24)

v0(∇2 − M2
A)A0 − s(∇2 − M2

A)ϕ = −v0ρ, (25)

which consist of a system of two coupled linear differential
equations. It is possible to decouple these two equations
to get the following ones:

[∇2(∇2 − s2 − 2M2
A) + M4

A + v2
0∇2](∇2 − M2

A)A0

= − [(∇2 − M2
A)(∇2 − M2

A) + v2
0∇2] ρ, (26)

s[∇2(∇2 − s2 − 2M2
A) + M4

A + v2
0∇2][∇2 − M2

A]ϕ
= −v0{[∇2(∇2 − s2 − 2M2

A) + M4
A]

+v(∇2 − M2
A)(∇2 − M2

A)}ρ. (27)

In order to solve (26), one proposes a point-like
charge-density distribution, ρ (r) = eδ(r), and a Fourier-
transform representation for the scalar potential, A0(r) =

1
(2π)2

∫
d2keik.rÃ0(k), so that there follows a Bessel K0

solution:

A0(r) =
e

(2π)
[(

A+ + v2
0B+

)
K0 (M+r) (28)

+
(
A− + v2

0B−
)
K0 (M−r) − v2

0 (B+ + B−) K0 (MAr)
]
,

where the involved constants are given below:

A± =
1
2

[
1 ± (s2 − v2

0)√
(s2 − v2

0)(s2 − v2
0 + 4M2

A)

]
, (29)

B± =

[
2T±

(s2 − v2
0) ±√(s2 − v2

0)(s2 − v2
0 + 4M2

A)

]
,

(30)

T± =
1
2

[
1 ± (s2 − v2

0 + 2M2
A)√

(s2 − v2
0)(s2 − v2

0 + 4M2
A)

]
, (31)

M2
± =

1
2
[
(s2 − v2

0 + 2M2
A)

±
√

(s2 − v2
0)(s2 − v2

0 + 4M2
A)
]

. (32)

The electric field, derived from (28), is given simply by

E(r) = − e

(2π)
[− (A+ + v2

0B+
)
M+K1 (M+r)

− (
A− + v2

0B−
)
M−K1 (M−r)

+ v2
0 (B+ + B−) MAK1 (MAr)

] ∧
r. (33)

Both the electric field and scalar potential expressions
present nearly the same functional behavior as the cor-
responding MCS-Proca, given by (18) and (20), when
v0/s � 1 or MA/s ∼ 1, as it shall be explained below.
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Fig. 1. Simultaneous plot of the pure MCS-Proca potential
(box dotted line) for s = 20, MA = 2; the scalar potential
(circle dotted line) for s = 20, MA = 2, v0 = 8; the scalar
potential for s = 20, MA = 2, v0 = 15 (continuous line)

The presence of the background is not decisive to deter-
mine qualitative modifications in their form both near and
far from the origin. Indeed, in the limit of short distances
(r � 1), the scalar potential (28) exhibits a purely loga-
rithmic behavior, whereas the electric field (33) goes as a
1/r function,

A0(r) = −
( e

2π

)
ln r, E(r) = −

( e

2π

) 1
r

∧
r, (34)

which reveals the repulsive character of (28) near the
origin. It is interesting to remark that, in this limit, all
the background corrections drop out, and do not lead to
modifications to the MCS-Proca behavior near the origin.
Far from the origin (r → ∞), both the scalar potential
and electric fields decay exponentially, showing an entirely
screened behavior.

In a general sense, the background only seems to pro-
mote a damping in the screening of the solutions, increas-
ing then their range. The smaller the factors M± are, the
larger is the range. As far as M2

± < m2
±, the range of

these new solutions is larger than the MCS-Proca ones
corresponding with them. Despite the functional similar-
ity between the potentials (18) and (28), they may differ
substantially in two clear situations:
(i) the Proca mass is small in comparison with the other
mass parameters (s, M+, M−) of this solution, which turns
the term K0(MAr) dominant and reverses the behavior of
the scalar potential;
(ii) the modulus of v0 is near the topological mass
(v0/s � 1), in which regime the influence of the back-
ground upon the solutions is maximal. The graphs in
Figs. 1 and 2 illustrate these cases.

In Fig. 1 are shown three curves for a small value of the
Proca mass (MA = 2). One then verifies that the closer
v0 is from the s value (in this case s = 20), the bigger
the deviation from the pure MCS-Proca behavior, as il-
lustrated by the continuous curve. As the value of v0 de-
creases, the scalar potential tends to the MCS-Proca be-
havior, as shown by the intermediate cross dotted line. For
v0 = 0, we obviously recover the pure MCS-Proca behav-
ior, depicted by the box dotted line. The scalar potential
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Fig. 2. Box dotted line: plot of the pure MCS-Proca poten-
tial for s = 20, MA = 8; Cross dotted line: plot of the scalar
potential for s = 20, MA = 8, v0 = 8; Continuous line: plot of
the scalar potential for s = 20, MA = 8, v0 = 17

is negative in some radial extent due to the role played by
the term −K0(MAr), which becomes dominant over the
K0(M±r) terms for MA � M±. Hence, the attractive-
ness here observed is ascribed to the smallness of the ratio
MA/s. In Fig. 2, the same kind of simultaneous plot is dis-
played for a larger value of MA, from where one notes that
the deviations from the MCS-Proca behavior are strongly
attenuated whenever the ratio MA/s increases.

Both Figs. 1 and 2 show that the scalar potential is
always repulsive near the origin and decays exponentially
for large distances. Its behavior is very similar to the MCS-
Proca one in the cases in which v0/s � 1 or MA/s ∼
1, but deviates substantially from it in the case one has
MA � M± or v0/s � 1, for which one observes a potential
that becomes attractive at intermediary distances. As a
final point, it is important to remark that in the limit of
a vanishing background (v0 −→ 0), one trivially recovers
the MCS-Proca solutions, since A± → c± in this situation.

4.2 The external vector is purely spacelike:
vµ = (0, v)

In this case, one should consider (9) and (12), which in
the static regime are written in the form

[∇2(∇2 − s2 − 2M2
A) + M4

A]A0

+
(∇2 − M2

A

)
(v × ∇ϕ) = −(∇2 − M2

A)ρ, (35)

(v × ∇)A0 + (∇2 − M2
A)ϕ = 0, (36)

Decoupling these equations, one attains

[∇2(∇2 − s2 − 2M2
A) (37)

+ M4
A − (v∗ · ∇)(v∗ · ∇)]A0 = −(∇2 − M2

A)ρ,

[∇2(∇2 − s2 − 2M2
A)

+ M4
A − (v∗ · ∇)(v∗ · ∇)]ϕ = −(v∗ · ∇)ρ. (38)

Starting from a point-like charge-density distribution,
ρ (r) = eδ(r), and proposing again a Fourier-transform

representation for the scalar potential, the solution will
be given by the general the integral expression:

A0(r) =

(
e

(2π)2

∫ ∞

0

kdk[
k2 + R2

+
] ∫ 2π

0
P+eikr cos ϕdϕ

−
∫ ∞

0

kdk[
k2 + R2−

] ∫ 2π

0
P−eikr cos ϕdϕ

)
, (39)

where

P± =
1
2

(40)

×
1 ± (s2 + v2 sin2 α)√

(s2 + v2 sin2 α)(s2 + v2 sin2 α + 4M2
A)

 ,

R2
± =

1
2
[
(s2 + 2M2

A + v2 sin2 α)

±
√

(s2 + v2 sin2 α)(s2 + 4M2
A + v2 sin2 α)

]
, (41)

and α is the angle defined by the relation cosα = v ·k/vk,
that is, the angle determined by the external background
(v) and transfer momentum (k). The fact the constants
P±, R± depend on the angle variable (α) implies that the
integrations above cannot be exactly solved. An exact re-
sult was not found for these integrations, but a sensible
approximation can be performed in order to solve them
algebraically. Indeed, considering the condition s2 � v2,
some approximations are necessary so that the integration
indicated becomes feasible. In this regime, one has

P± 	 1
2
[1 ± s/γ ± (2M2

Av2/sγ3) sin2 α], (42)

1[
k2 + R2±

] 	 1[
k2 + m2±

] ∓ m2
±

sγ

v2 sin2 α[
k2 + m2±

]2 , (43)

with m2
± =

[
s2 + 2M2

A ± sγ
]
/2, and γ =

√
s2 + 4M2

A. It
should be remarked that the factors m2

± are exactly the
ones that appear in the MCS-Proca solutions, given by
(23). Here, one considers as well the angle between v and
r, given by cos β = v · r/vr, where β = cte. While the
background vector, v, sets up a fixed direction in space,
the coordinate vector, r, defines the position where the
potentials are to be measured; so, β is the (fixed) angle
that indicates the directional dependence of the fields in
relation to the background direction. Being confined to the
plane, these angles satisfy a simple relation: α = ϕ − β,
which allows for the evaluation of the angular integra-
tion on the ϕ variable, based on the following expression:
sin2 α = cos2 β − (cos 2β) cos2 ϕ + c3 sin 2ϕ. Considering
all that, one has∫ 2π

0

[
P−eikr cos ϕ

]
dϕ

	 (2π)
2
[(

1 − s/γ − ε sin2 β
)
J0(kr)

+ ε cos 2βJ1(kr)/ (kr)] , (44)
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∫ 2π

0

[
P+eikr cos ϕ

]
dϕ

	 (2π)
2
[(

1 + s/γ + ε sin2 β
)
J0(kr)

− ε cos 2βJ1(kr)/ (kr)] , (45)

with ε = 2M2
Av2/sγ3. However, the task is not complete

yet. In order to solve the integration in dk, it is essen-
tial to notice that the terms R2

±, given in (41), are also
dependent on the angle variable, requiring the use of an-
other suitable approximation, given in (43). Taking into
account the above angular integrations, one then carries
out the k-integrations, arriving (at first order in v2/s2) at
a lengthy expression for the scalar potential, namely

A0(r) =
e

2(2π)

{
δ+K0(m+r) + δ−K0(m−r)

− σ+(r)K1(m+r) + σ−(r)K1(m−r)
}

, (46)

where

δ± =
[
1 ± s/γ ± v2

2sγ3 (γ2 ± sγ − 4m2
+ sin2 β)

]
;

σ±(r) = v2
[
−2m±

sγ3

cos 2β

r
+

m± (1 ± s/γ) sin2 β

2sγ
r

]
.

In this expression, one notes a clear dependence of the
potential on the angle β, which is an unequivocal sign of
anisotropy determined by the ubiquity of the background
vector in the system.

The electric field can be obtained in a straightforward
way from (46); it looks as follows:

E(r) = − e

2(2π)

{
−m+

[
δ+ − 4v2 cos 2β

sγ3r2

]
K1(m+r)

− m−

[
δ− − 4v2 cos 2β

sγ3r2

]
K1(m−r)

+ m+σ+K0(m+r) − m−σ−K0(m−r)} ∧
r. (47)

Near the origin, the short-distance potential behaves like
as a genuine logarithmic function, whereas the electric
field goes as a 1/r function:

A0(r) = − e

(2π)

[
1 +

v2

2γ2 (1 − cos 2β)
]

ln r,

E(r) = − e

(2π)

[
1 +

v2

2γ2 (1 − cos 2β)
] ∧

r

r
. (48)

Such expressions reveal that the scalar potential is always
repulsive at the origin. The presence of the anisotropy fac-
tor is not able to revert this behavior, since v2 � s2. Far
away from the origin, the long-range potential vanishes
according to the behavior of the Bessel functions, namely
A0(r) → 0, E(r) → 0. This result shows that these solu-
tions decay rapidly as r → ∞, revealing a strong screening
as already observed in the pure timelike case.
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Fig. 3. Simultaneous plot of the MCS-Proca scalar potential
(box dotted curve), scalar potential for β = π/4 (circle dotted
curve), scalar potential for β = π/2 (continuous curve). The
common parameter values are s = 20, MA = 2, v = 5

The graphics in Fig. 3 displays the behavior of the
scalar potential compared with the MCS-Proca one. It
should be reported that the scalar potential has shown to
be always positive for all the values of parameters adopted.
This last illustration shows that the deviations from the
MCS-Proca behavior are small, a consequence of the ap-
proximation v2/s2 � 1, which does not allow one to probe
the form of the scalar potential for larger values of the
background.

It can be easily observed that in the absence of
the background, v = 0, the scalar potential and the
electric field are reduced to the corresponding MCS-
Proca ones: A0(r) = e/2(2π)[(1 + s/γ)K0(m+r) + (1 −
s/γ)K0(m−r)], E(r) = −e/2(2π)[(1+s/γ)m+K0(m+r)+
(1− s/γ)m−K0(m−r)]

∧
r, which are the solutions given in

(18) and (20). Here, the effect of the background vector,
v, appears more clearly on the field solutions. As com-
pared with the MCS-Proca fields (B and E), there arise
supplementary terms, depending on the background and
on the angle β, responsible for the spatial anisotropy.

As for the solution for the scalar field in the case of a
purely spacelike background, it can be obtained starting
from (38), which, according to the procedure adopted so
far, yields the following integral expression:

ϕ(r) =
e

(2π)2
(v∗ · ∇)

×
[∫ ∞

0

kdk[
k2 + R2

+
] ∫ 2π

0
Qeikr cos ϕdϕ

−
∫ ∞

0

kdk[
k2 + R2−

] ∫ 2π

0
Qeikr cos ϕdϕ

]
, (49)

where Q =
[
(s2 + v2 sin2 α)(s2 + 4M2

A + v2 sin2 α)
]−1/2

.
Making use of (43) and the suitable approximation, Q 	
1/(sγ)−(s2+2M2

A)v2 sin2 α/(sγ)3, a lengthy solution may
be attained for the scalar field after a boring calculation,
namely
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ϕ(r)

= − e

(2π)

{
m+�+(r)K1(m+r) − m−�−(r)K1(m−r)

− ς+(r)K0(m+r) + ς−(r)K0(m−r)
}(

v∗ · ∧
r
)

, (50)

where

�±(r)

=

[
1
sγ

− 2m2
±

(sγ)3
v2 sin2 β ± v2

2 (sγ)2
+

4v2 cos 2β

(sγ)3
1
r2

]
,

ς±(r) =
m2

+v2

2(sγ)2

(
±r sin2 β − 4 cos 2β

(sγ)
1
r

)
.

Near the origin, this solution behaves as ϕ(r) →
−e/(2π)[1/(sγ)2] (1/r)

(
v∗ · ∧

r
)
, implying an attractive

character in this limit. Concerning the asymptotic behav-
ior, the scalar solution vanishes exponentially.

5 Solutions for the vector potential
and the magnetic field in the static limit

In this section, we aim at constructing the solutions for the
vector potential and magnetic field for a point-like static
charge for both a timelike and spacelike Lorentz violating
backgrounds. These solutions are achieved from the dif-
ferential equations (9) and (13), which in the static limit
constitute a coupled system of two differential equations.

5.1 The external vector is purely timelike:
vµ = (v0, 0)

Starting from (5) and (13), one writes the following system
in the static limit:

[∇2(∇2 − s2 − 2M2
A) + M4

A]A
+v0

(∇2 − M2
A

)
(∇∗ϕ) = −s∇∗ρ,

v0∇ × A +
(∇2 − M2

A

)
ϕ = 0,

which may be decoupled in two equations for the vector
potential and the scalar field:

[∇2(∇2 − s2 − 2M2
A) + M4

A]A = −s∇∗ρ, (51)
[∇2(∇2 − s2 − 2M2

A) + M4
A]
(∇2 − M2

A

)
ϕ

= sv0∇2ρ. (52)

Proposing a Fourier-transform representation for the vec-
tor potential, A(r) = 1

(2π)2
∫

d2keik.rÃ(k), it turns out to
be

A(r) = − es

(2π)
C [M+K1 (M+r) − M−K1 (M−r)]

∧
r∗,

(53)
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Fig. 4. Simultaneous plot for the MCS-Proca vector potential
(box dotted line), vector potential for v0 = 14 (circle dotted
line) and vector potential for v0 = 18 (continuous line), with
s = 20, MA = 2

where C = 1/
√

(s2 − v2
0)(s2 − v2

0 + 4M2
A), and the terms

M2
± are defined in (32). The magnetic field, B = ∇ × A,

stems directly from the equation above in the form

B(r) = − es

(2π)
C
[
M2

+K0 (M+r) − M2
−K0 (M−r)

]
.

Comparing these solutions with the MCS-Proca coun-
terparts, one then notices that the background does not
impose any functional modification. Its role is limited to
yielding an increasing of the associated range, which can
be observed in Fig. 4.

It is simple to notice that the solutions here attained
for A and B present the same behavior of the MCS-Proca
case both near and far from the origin. Indeed, for r → 0,
the vector potential vanishes (A → 0), whereas the mag-
netic field behaves like a pure logarithmic function:

B(r) →
(
− es

2π

)
ln r,

in much the same way as the MCS-Proca behavior. Far
from the origin, both these fields vanish exponentially.

In Fig. 4 is shown for illustration a comparison between
the MCS-Proca vector potential and the one given by (53),
which clarifies the role of the background: the larger is v0,
the larger is the deviation from the MCS-Proca behavior
(the potential becomes more positively pronounced).

In this section, it is still possible to derive a solution for
the scalar field in the case of a purely timelike background,
which stems from (52). This solution is easily attained
following the usual procedure here adopted:

ϕ(r) =
e

(2π)
(sv0)

× [B+K0 (M+r) + B−K0 (M−r)
−(B+ + B−)K0 (MAr)] ,

where the coefficients B± are given in (30) and (31). Near
the origin this solution vanishes identically, that is ϕ(r) →
0. Far from the origin it vanishes exponentially according
to the Bessel-like asymptotic behavior.
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5.2 The external vector is purely spacelike:
vµ = (0, v)

Starting from (9) and (13), one attains

[∇2(∇2 − s2 − 2M2
A) + M4

A]A − s∇∗(v · ∇∗ϕ)
= −s∇∗ρ, (54)

[(v∗ · ∇)∇ × +M2
Av·]A − s

(∇2 − M2
A

)
ϕ = 0, (55)

which can be decoupled in the two following equations:[
[∇2(∇2 − s2 − 2M2

A) + M4
A]

+ (v · ∇∗)(v · ∇∗)] A = −s∇∗ρ, (56)[
[∇2(∇2 − s2 − 2M2

A) + M4
A

+ (v · ∇∗)(v · ∇∗)]
(∇2 − M2

A

)]
ϕ

= [(v∗ · ∇)∇ × +M2
Av·]∇∗ρ. (57)

The solution of (56) is given by the following integral
expression:

A(r) = − es

(2π)2
∇∗

[∫ ∞

0

kdk[
k2 + R2

+
] ∫ 2π

0
Deikr cos ϕdϕ

−
∫ ∞

0

kdk[
k2 + R2−

] ∫ 2π

0
Deikr cos ϕdϕ

]
, (58)

where D = 1/
√

(s2 + v2 sin2 α)(s2 + v2 sin2 α + 4M2
A),

and the factors R2
± are given by (41). In order to solve the

integrations involved in this expression, one should use the
approximation (43) supplemented by the following one:

D 	 − 1
sγ

+

(
s2 + 2M2

A

)
(sγ)3

v2 sin2 α,

Considering all that, we achieve again a lengthy result:

A(r) = − es

(2π)

{
χ+(r)K0(m+r) + χ−(r)K0(m−r)

+ ω+(r)K1(m+r) + ω−(r)K1(m−r)
} ∧

r∗, (59)

where

χ±(r) = −m±v2

(sγ)2

(
∓2m±

(sγ)
cos 2β

r
+

m± sin2 β

2
r

)
, (60)

ω±(r) = ∓m±

(
− 1

sγ
+

v2

(sγ)3
(
2m2

± sin2 β ∓ sγ

2

))

± 4v2m+

(sγ)3
cos 2β

r2 , (61)

where the spatial anisotropy determined by the fixed
background becomes manifest. Considering the behav-
ior of the K0, K1 functions near the origin [K0(sr) →
− ln r − γEuler − ln(s/2), K1(sr) → 1/(sr) + sr(ln r/2 +
ln(s/2)/2 + (1 − 2γEuler)/4], it is possible to show (after

0.4

0.6

0.8

1

00.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3
r

Fig. 5. Simultaneous plot for the MCS-Proca vector potential
(box dotted line), vector potential for β = π/3 (circle dotted
line) and vector potential for β = π (continuous line), with
s = 24, MA = 4, v = 8

some algebraic calculations) that the vector potential van-
ishes in this limit (A(r) → 0 for r → 0). Far away from
the origin, all the terms can be neglected, so that the
vector potential also vanishes asymptotically. It is inter-
esting to remark that the vector potential vanishes near
and far from the origin for both time- and spacelike back-
grounds, recovering the pure MCS-Proca behavior. This
fact demonstrates that the background does not impose
physical changes into this potential in these two limits.

In Fig. 5, one illustrates the behavior of the vector po-
tential compared to the MCS-Proca vector potential. One
observes that the deviations from the MCS-Proca behav-
ior are very small as a consequence of the approximation
adopted, (v/s)2 � 1. In this case, it is notorious that the
background is unable to bring about expressive modifi-
cations even at the intermediary radial region. A similar
conclusion follows from Fig. 3, which exhibits the behavior
of the scalar potential (derived under the same approxi-
mation).

We can now finish by evaluating the magnetic field
associated with this vector potential, which takes the form
below:

B(r) =
es

(2π)

{
η+(r)K0(m+r) + η−(r)K0(m−r)

+ ξ+(r)K1(m+r) + ξ−(r)K1(m−r)
}

, (62)

where

η±(r) = −m2
±

sγ
+

2m4
±v2

(sγ)3
sin2 β

+
m2

±v2

2 (sγ)2
(±1 − 2 sin2 β)

± 4m2
±v2

(sγ)3
cos 2β

r2 ,

ξ±(r) =
m3

±v2 sin2 β

2 (sγ)2
r ∓ 8m±v2

(sγ)3
cos 2β

r3
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∓ 2m2
±v2

(sγ)3
cos 2β

r
.

Near the origin, this magnetic field recovers the MCS-
Proca behavior [B(r) → ln r for r → 0], while it exponen-
tially vanishes asymptotically.

6 Final remarks

Starting from a dimensionally reduced gauge invariant,
but Lorentz and CPT violating planar model [15], de-
rived from the Carroll–Field–Jackiw Abelian–Higgs model
[9], we have studied the extended Maxwell equations (and
the corresponding wave equations for the field strengths
and potentials) stemming from this planar Lagrangian.
While the field strengths satisfy second-order inhomoge-
neous wave equations, the potential components (A0,A)
fulfill fourth-order wave equations, in a clear similarity to
the usual behavior inherent to the pure MCS-Proca elec-
trodynamics. As expected, this structural resemblance is
also manifest in the solutions to these equations.

In the case of a purely timelike background, one has
attained solutions for the potentials (A0,A) and fields
(B,E) that behave very similarly in some respects to
the MCS-Proca counterparts. Specifically, the solutions
worked out possess an identical behavior to the MCS-
Proca counterpart near and far from the origin, revealing
that the background does not affect the MCS-Proca solu-
tions in both these limits. The qualitative differences in-
duced by the background appear at an intermediary radial
region, in which the solutions deviate from the MCS-Proca
counterpart in a pronounced way in the case of a small
Proca mass (MA/s � 1) or a large background (v0 � s).
Another effect of the background is the increasing of the
range of the solutions, also manifest in a more notorious
way for v0 � s. Once the purely timelike backgrounds al-
low for the attainment of exact algebraic solutions, the
value of v0 may be taken as close to the value of s as pos-
sible, which points out the role of the background. The
graphs in Figs. 1 and 4 illustrate these conclusions. The
MCS-Proca solutions are readily recovered whenever the
background is supposed to vanish or is very small in com-
parison with the other mass parameters. A solution for
the scalar field (ϕ) was also derived, exhibiting a simi-
lar structure to the scalar potential for both timelike and
spacelike backgrounds.

In the pure spacelike case, the solutions may not be ob-
tained exactly. In order to solve the angular integrations
involved, some approximations were considered. In gen-
eral, one regards the regime in which the Chern–Simons
mass parameter is much larger than the background mod-
ulus (s2 � v2), so that the solutions derived are valid to
the first order in v2/s2. Due to this approximation, there
appear complex combinations of Bessel K0 and K1 func-
tions as solutions for the potentials and field strengths. All
these expressions depend on the angle β, which represents
the dependence of the solutions on the 2-direction fixed
by the background (v). It must be stated that all these
non-trivial solutions are reduced to the simple MCS-Proca

solutions in case of a vanishing background. Analogously
to the purely timelike case, the effect of the background on
the scalar potential and vector potential disappears in the
limits r → 0, r → ∞, in which they recover the correlated
MCS-Proca behavior. It should be remarked that even
at intermediary regions these solutions exhibit only small
deviations from the MCS-Proca solutions, a direct conse-
quence of the approximation adopted (s2 � v2), which
prevents the investigation in a situation of a large back-
ground (v0 � s). In order to properly analyze the solutions
in this latter limit, it would be necessary to obtain exact
algebraic solutions, valid for any value of the modulus of
the background. In this case, one believes that the result-
ing solutions would exhibit remarkable deviations from
the MCS-Proca counterparts, as observed in the purely
timelike case. Concerning the scalar field, a solution was
attained in much the same way as done for the poten-
tials, exhibiting a similarly anisotropic structure. Finally,
it should be pointed out that all solutions obtained as a
result appear to be entirely shielded, a consequence of the
Proca mass, which prevents the appearance of unescreened
solutions (logarithmic ones), as it occurs in the case of the
analogous MCS-Lorentz violating planar model solved in
[14].

The solutions for the scalar potential of this work put
in evidence the possibility of attaining an attractive be-
havior and the possible formation of bound states. Con-
cerning an electron–electron interaction, this issue may be
properly investigated by means of the interaction poten-
tial stemming from the evaluation of the Möller scatter-
ing amplitude. Such a calculation was already carried out
in the context of Lorentz violating theories in three and
four dimensions [17]. In the case of the planar model of
[13], the Möller interaction potential obtained presents an
asymptotic logarithmic behavior which represents an un-
real physical interaction in a planar dimension. In the case
of the present Abelian–Higgs Lorentz violating model, it
is expected that such an evaluation yield a screened solu-
tion, suitable for describing a real interaction in condensed
matter planar systems. This issue is now under investiga-
tion.
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